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tions (eq 7) is disproportionation to IPA and acetone via the 
enol.10 

The dip in the plot for CHD quenching of 3 and 5 in IPA 
(not seen in MeOH or CF3CH2OH) is tentatively attrib
uted to scavenging by CHD (<0.05 M) of radicals which 
would otherwise react to some extent with 3 and 5. At high
er [CHD], triplet quenching becomes significant, and nor
mal Stern-Volmer kinetic behavior is observed. 

Several points of general significance emerge from this 
study. (1) Light intensity effects should be important in so
lution for photochemical reactions involving radical inter
mediates, especially when chain processes or induced de
composition of reactant is involved.9 This may be quite gen
eral in IPA and related H-donor solvents. (2) Dienes acting 
as radical traps can efficiently quench photochemical reac
tions involving radical intermediates by processes other 
than triplet energy transfer.8 Radical quenching may in
deed be involved in systems where differential quenching of 
two or more products is observed, heretofore used as evi
dence for two reactive quenchable triplets.214'1' (3) There 
are increasingly frequent reports of dramatic changes in the 
course of a photochemical reaction as the wavelength of 
light is varied.12 Since /° changes drastically as \ varied 
(often comparison is made between experiments at 254 and 
366 nm using different lamps) it is frequently not possible 
without further study to unequivocally attribute such differ
ences to one or the other factor. 
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Direct Evidence for Reversal of Helicity in the 
Stereoisomerization Mechanism of 
Bis(|S-diketonato)titanium(IV) Complexes 

Sir: 

In connection with our recent studies of isomerism and 
isomerization in propeller-like molecules1 we became aware 
of a report2 dealing with studies on static and dynamic 
stereochemistry of some m-dialkoxybis(acetylacetonate)ti-
tanium compounds, in which prochiral groups were intro
duced as ligands. In particular, Bradley and Holloway2 ob
served that "the kinetic parameters for methyl isopropyl 
group exchange (in 1) were the same as for methyl (acac 
group) exchange" and that "at low temperature the a-pro-
tons of the neopentyl glycollate group in Ti(acac)2(0-
CH2CMe2CH2O) broadened and split into an AB group". 

The purpose of this communication is to note that such 
experiments provide compelling evidence for reversal of he
licity in the stereoisomerization mechanism of such mole
cules. The relevance of such a conclusion is borne out in the 
following. 

The cumulative weight of circumstantial evidence so far 
accumulated has pointed out that dialkoxybis(chelate)titan-
ium compounds2'3 as well as a large number of structurally 
related dihalogenobisdS-diketonato) derivatives of group 4 
elements4 adopt a cis octahedral structure. Such structure 
has C2 skeletal symmetry point group and thus is chiral. It 
follows that 1 can be regardedld,e as a two-bladed propeller-
shaped molecule, and thus two enantiomeric forms are pos
sible, which differ only in the sense of twist (helicity) of the 
chelate acetylacetonate rings.5 

Therefore, when interconversion of the two enantiomeric 
forms is slow on the NMR time scale the methyl isopropoxy 
groups in 1, as well the a-protons of the neopentyl glycol-
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late in 2, reside in diastereomeric environments6 and thus 
are expected to give rise to separate signals even under con
ditions of rapid (on the N M R time scale) rotation or molec
ular flexibility of these groups. 

An immediate consequence of this analysis is that the 
data indicate that the stereoisomerization mechanism of 
lowest energy in such propeller-like molecules involves a re
versal of helicity of the structure. 

In fact, although isomerizations of such complexes have 
mainly been discussed in terms of nonbond-rupture twist 
mechanism413,41 which involves a reversal of helicity of the 
structure, alternative rearrangements in which isomeriza-
tion is not accompanied by a reversal of helicity were not 
ruled out by the experimental results, since change of heli
city was not directly monitored. In particular, use of the 
group theory has pointed out41 '7-9 that for octahedral six-
coordinate molecules all the possible permutations among 
the ligands form a group, termed the permutational group 
(Se). Use of double cosets allows one to partition this group 
into five subsets termed modes,7-9 where a mode is a set of 
permutations which are either rotationally equivalent or 
symmetry equivalent.7 These modes have been designated 
Mo. Mi, M2, M3, M 4 by Musher.9 

Complete permutational analysis of such bischelate sys
tems10 indicates that rearrangements by modes Mi , Mb, 
and M3 include a reversal of helicity of the structure, 
whereas modes Mo and M4 do not. 

Now the finding that the "kinetic parameters for methyl 
isopropyl group exchange were the same as for methyl 
(acac group) exchange"2 provides strong evidence that the 
rate of enantiomerization of 1 (i.e., the rate of reversal of 
helicity, monitored by the isopropoxy groups) occurs at the 
same rate as the position exchange of the diastereotopic 
acetylacetonate methyl groups. Thus, the reinterpretation 
of- these experimental results evidenciates that only rear
rangements by modes Mi, M2, and M3 need to be consid
ered as the lowest energy stereoisomerization pathways in 
such molecules." However, although mode M2 causes an 
inversion of helicity (enantiomerization) it is unable of ex
changing the diastereotopic acetylacetonate methyl groups. 

It should be remarked that similar experiments were al
ready designated by several authors in order to detect 
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change of helicity in propeller-like molecules.12,13 The simi
larity between this analysis and the previous one12 is not ac
cidental but owes its existence to the fact that all these mol
ecules can be regarded as propeller-shaped structures and 
thus may be analyzed in terms of the same abstract mo-
d e l ld,e,12 

N O T E A D D E D IN P R O O F . After this paper was accepted 
we became aware of a report in which conclusions along 
these lines were drawn by the authors.14. 
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experimental methods in Part A with emphasis on rate law deter
mination, deduction of mechanism, and description of experimen
tal techniques, including relaxation and spectroscopic methods for 
determination of rates of reaction. The question of how a practic
ing chemist may benefit from a full arsenal of chemical kinetic 
methods seems to be foremost in the author's mind. Part B is con
cerned with results and deals with topics of current interest: substi
tution reactions, electron transfer reactions, modification of ligand 
reactivity by complex formation, stereochemical change and, final
ly, a brief survey of the transition elements. A comprehensive and 
current (end 1973) list of journal as well as textbook references is 
provided at the end of each chapter. The sets of problems at the 
end of each chapter are based on recent publications and have been 
well selected. A clear and readable account of the subject is pre
sented. In this reviewer's opinion, some additional features, such as 
the use of AG instead of AF, determination of thermodynamic pa
rameters from relaxation amplitudes, and mention of improved 
time resolution with the recent cable discharge temperature jump 
apparatus, would have been desirable. 

In summary, this book can be highly recommended for use as a 
text in an advanced course in inorganic reaction kinetics. 

Ramesh C. Patel, Clarkson College of Technology 

Book Reviews 

Journal of the American Chemical Society / 97:15 / July 23, 1975 


